skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Takeuchi, Tatsu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the Lambda-CDM model, dark energy is viewed as a constant vacuum energy density, the cosmological constant in the Einstein–Hilbert action. This assumption can be relaxed in various models that introduce a dynamical dark energy. In this paper, we argue that the mixing between infrared (IR) and ultraviolet (UV) degrees of freedom in quantum gravity leads to infinite statistics, the unique statistics consistent with Lorentz invariance in the presence of nonlocality, and yields a fine structure for dark energy. Introducing IR and UV cutoffs into the quantum gravity action, we deduce the form of Lambda as a function of redshift and translate this to the behavior of the Hubble parameter. 
    more » « less
  2. We discuss the existence of an acceleration scale in galaxies and galaxy clusters and its relevance for the nature of dark matter. The presence of the same acceleration scale found at very different length scales, and in very different astrophysical objects, strongly supports the existence of a fundamental acceleration scale governing the observed gravitational physics. We comment on the implications of such a fundamental acceleration scale for constraining cold dark matter models as well as its relevance for structure formation to be explored in future numerical simulations. 
    more » « less
  3. null (Ed.)
    A bstract We consider the introduction of a complex scalar field carrying a global lepton number charge to the Standard Model and the Higgs inflation framework. The conditions are investigated under which this model can simultaneously ensure Higgs vacuum stability up to the Planck scale, successful inflation, non-thermal Leptogenesis via the pendulum mechanism, and light neutrino masses. These can be simultaneously achieved when the scalar lepton is minimally coupled to gravity, that is, when standard Higgs inflation and reheating proceed without the interference of the additional scalar degrees of freedom. If the scalar lepton also has a non-minimal coupling to gravity, a multi-field inflation scenario is induced, with interesting interplay between the successful inflation constraints and those from vacuum stability and Leptogenesis. The parameter region that can simultaneously achieve the above goals is explored. 
    more » « less